Inhibition of apoptotic signaling and neointimal hyperplasia by tempol and nitric oxide synthase following vascular injury.

نویسندگان

  • Dammanahalli K Jagadeesha
  • Francis J Miller
  • Ramesh C Bhalla
چکیده

OBJECTIVES We hypothesized that redox-mediated apoptosis of medial smooth muscle cells (SMC) during the acute phase of vascular injury contributes to the pathophysiology of vascular disease. METHODS Apoptosis of medial SMC (1-14 days following balloon injury) was identified in rat carotid arteries by in situ DNA labeling. NADPH-derived superoxide and expression of Bcl-xL, Bax, caspase-3 and caspase-9 were assessed. The antioxidant tempol was administered in drinking water throughout the experimental period, and local adenoviral-mediated gene transfer of eNOS was performed prior to vascular injury. RESULTS Balloon injury increased NADPH-dependent superoxide production, medial SMC apoptosis, Bax-positive medial SMC index, Bax/Bcl-xL ratio, and caspase-3 and caspase-9 expression in the injured arteries. Treatment with tempol or eNOS gene transfer decreased superoxide levels and medial SMC apoptosis, with a concomitant increase in medial SMC density. Inhibition of superoxide was associated with a decreased Bax/Bcl-xL ratio, and caspase-3 and -9 expression. Tempol treatment and eNOS gene therapy significantly reduced neointima formation. CONCLUSION Vascular generation of reactive oxygen species participates in Bax activation and medial SMC apoptosis. These effects likely contribute to the shedding of cell-cell adhesion molecules and promote medial SMC migration and proliferation responsible for neointimal hyperplasia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apolipoprotein E inhibition of vascular hyperplasia and neointima formation requires inducible nitric oxide synthase.

Previous studies have shown apolipoprotein E (apoE) recruitment to medial layers of carotid arteries after vascular injury in vivo and apoE activation of inducible nitric oxide synthase (iNOS) in smooth muscle cells in vitro. This investigation explored the relationship between medial apoE recruitment and iNOS activation in protection against neointimal hyperplasia. ApoE was present in both neo...

متن کامل

Tetrahydrobiopterin determines vascular remodeling through enhanced endothelial cell survival and regeneration.

BACKGROUND Endothelial cell (EC) survival and regeneration are important determinants of the response to vascular injury that leads to neointimal hyperplasia and accelerated atherosclerosis. Nitric oxide (NO) is a key regulator of EC and endothelial progenitor cell function, but the pathophysiological mechanisms that regulate endothelial NO synthase in endothelial regeneration remain unclear. ...

متن کامل

Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta.

CGRP is a well-known neuropeptide that has various protective effects on cardiovascular system. Our previous studies have shown that CGRP inhibits vascular smooth muscle cell (VSMC) proliferation in vitro. The present study aimed to explore the role of the CGRP in neointimal formation after balloon injury in the rat aortic wall and the underlying mechanism. Gene transfer of CGRP was performed w...

متن کامل

Protective role of clusterin/apolipoprotein J against neointimal hyperplasia via antiproliferative effect on vascular smooth muscle cells and cytoprotective effect on endothelial cells.

OBJECTIVE Clusterin is induced in vascular smooth muscle cells (VSMCs) during atherosclerosis and injury-induced neointimal hyperplasia. However, its functional roles in VSMCs and endothelial cells remain controversial and elusive. This study was undertaken to clarify the role of clusterin in neointimal hyperplasia and elucidate its mechanism of action. METHODS AND RESULTS Adenovirus-mediated...

متن کامل

Deletion of Hyaluronan Synthase 3 Inhibits Neointimal Hyperplasia in Mice.

OBJECTIVE Hyaluronan (HA) is a polymeric glucosaminoglycan that forms a provisional extracellular matrix in diseased vessels. HA is synthesized by 3 different HA synthases (HAS1, HAS2, and HAS3). Aim of this study was to unravel the role of the HAS3 isoenzyme during experimental neointimal hyperplasia. APPROACH AND RESULTS Neointimal hyperplasia was induced in Has3-deficient mice by ligation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vascular research

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2009